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(57) ABSTRACT 

A neural network circuit is provided having a plurality of 
circuits capable of charge storage. Also provided is a plu- 
rality of circuits each coupled to at least one of the plurality 
of charge storage circuits and constructed to generate an 
output in accordance with a neuron transfer function. Each 
of a plurality of circuits is coupled to one of the plurality of 
neuron transfer function circuits and constructed to generate 
a derivative of the output. A weight update circuit updates 
the charge storage circuits based upon output from the 
plurality of transfer function circuits and output from the 
plurality of derivative circuits. In preferred embodiments, 
separate training and validation networks share the same set 
of charge storage circuits and may operate concurrently. The 
validation network has a separate transfer function circuits 
each being coupled to the charge storage circuits so as to 
replicate the training network’s coupling of the plurality of 
charge storage to the plurality of transfer function circuits. 
The plurality of transfer function circuits may be constructed 
each having a transconductance amplifier providing differ- 
ential currents combined to provide an output in accordance 
with a transfer function. The derivative circuits may have a 
circuit constructed to generate a biased differential currents 
combined so as to provide the derivative of the transfer 
function. 
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ARTIFIc2ALNEuRALNETwoRKwrrH 
HARDWARETRAININGANDEfARDWARE 

REFRESH 

This is because A/D and D/A converters must be used for 
weight quantization. For most training techniques, such as 
Error Back Propagation, weight quantization of each syn- 
aptic link requires at least 12 bit precision, or more, to 

5 provide sufEcient resolution for simple problems. Such 
resolution is impractical for most implementations due to ORIGIN OF THE INVENTION 
expense and size concerns. As such, either the resolution or 
the processing capability of the neural network is 

of a massive neural network makes this approach impracti- 
cal for typical applications. 

The invention described herein was made -in the perfor- 
mance of work under a NASA contract, and is subject to the 
provisions of Public Law 96-517 (35 USC 202) in which the 
contractor has elected not to retain title. 

Thus, providing such resolution for each 

SUMMARYOFTHEPREFERRED 
EMBODIMENTS 

BACKGROUND 

Neural networks offer a computing paradigm that allows 
a nonlinear inpudoutput relationship or transformation to be 15 
established based primarily on given examples of the rela- 
tionship than a formal Of its 
transfer function. This paradigm provides for a training of 

In an of the present invention, a neural 
network circuit is provided having a plurality of 
capable of charge storage. Also provided is a plurality of 

the network during which theweight values of the synaptic 
connections from one layer of neurons to another are 
changed in an iterative manner to successively reduce erroi 
between actual and target outputs. 

Typically, for neural networks to establish the transfor- 
mation paradigm, input data generally is divided into three 
parts. Two of the parts, called training and cross-validation, 
must be such that the corresponding input-output pairs 
(ground truth) are known. During training, the cross- 
validation set allows vedication of the status of the trans- 
formation relationship learned by the network to ensure 
adequate learning has occurred and to avoid over-learning. 
The third part, termed the validation data, which may or may 
not include the training and/or the cross-validation data set, 
is the data transformed into output. 

Neural networks may be formed with software, hardware, 
or hybrid implementations for training connectionist mod- 
els. One drawback with software techniques is that, because 
computers execute programmed instructions sequentially, 
the iterative process can be inconveniently slow and require 
vast amounts of computing resources to process the large 
number of connections necessary for most neural network 
applications. As such, software techniques are not feasible 
for most applications, and in particular, where computing 
resources are limited and large amounts of information must 
be processed. 

In one approach for analog implementation of a synapse, 
the weight is stored as a charge on a capacitor. A problem 
with representing a weight as a stored charge is that charge 
leakage changes the weight of the connection. Although 
there are several approaches to eliminate charge leakage, 
such as reducing the capacitor’s thermal temperature, or 
increasing its capacitance, they are not practical for most 
applications. As an alternative, an electrically erasable pro- 
grammable read only memory or EEPROM may be used. 
Although this eliminates the charge leakage problem, such a 
device is too slow for high speed learning networks. 

Hybrid systems on the other hand, are able to overcome 
the problem of charge leakage associated with capacitively 
stored weights by controlling training and refresh training 
digitally. In a typical hybrid system, the capacitively stored 
weight is digitized and monitored with digital circuitry to 
determine whether more training or whether refresh training 
is necessary. When necessary, the weight of the neuron is 
refreshed using the digitally stored target weight. 

A significant drawback with hybrid training and refresh 
approaches is that it is not practical for very large scale 
neural networks, which are necessary for most applications. 

circuits each coupled to at least one of the plurality of charge 
storage circuits and constructed to generate an output in *’ accordance with a neuron transfer function, along with a 
plurality of circuits, each coupled to one of the plurality of 
neuron transfer function circuits and constructed to generate 
a derivative of the output. A weight update circuit updates 
the charge storage circuits based upon output from the 

25 plurality of transfer function circuits and output from the 
plurality of derivative circuits. 

In preferred embodiments, a training network and a 
validation network share the same set of charge storage 

3o circuits and may operate concurrently. The training network 
has a plurality of circuits capable of charge storage and a 
plurality of transfer function circuits each being coupled to 
at least one of the charge storage circuits. In addition, the 
training network has a plurality of derivative circuits each 

35 being coupled to one of the plurality of transfer function 
circuits and constructed to generate a derivative of an output 
of the one transfer function circuit. The validation network 
has a plurality of transfer function circuits each being 
coupled to the plurality of charge storage circuits so as to 
replicate the training network’s coupling of the plurality of 
charge storage to the plurality of transfer function circuits. 

Embodiments of each of the plurality of transfer function 
circuits may be constructed having a transconductance 
amplifier. The transconductance amplifier is constructed to 

45 provide differential currents I, and I, from an input current 
I, and to combine the differential currents to provide an 
output in accordance with a transfer function. In such 
embodiments each of the plurality of derivative circuits may 
have a circuit constructed to generate a biased I, and a 

50 biased b, combine the biased I, and biased I,, and provide 
an output in accordance with the derivative of the uansfer 
function. In a preferred embodiment, in order to provide the 
derivative of the transfer function from the biasing and 
combining circuits and the transconductance amplifier 

55 outputs, each of the plurality of derivative circuits has a 
subtraction circuit. 

A preferred method of the present invention is performed 
by creating a plurality of synaptic weights by storing charge 
on a plurality of capacitive circuits and generating a plurality 

60 of neuron outputs in accordance with a transfer function. 
The outputs are generated from the plurality of weights 
using a plurality of transfer function circuits. The derivative 
of each of the plurality of neuron outputs is generated using 
a plurality of derivative circuits each coupled to one of the 

65 plurality of transfer function circuits. A neural network is 
trained using a plurality of delta weights which are gener- 
ated using the plurality of transfer function derivatives. 
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Furthemore, in a preferred method, a plurality of synaptic type technique. Such a technique uses a means to generate 
weights are established by storing charge on a plurality of delta weights 120 using an algorithm to determine the delta 
capacitive circuits using a training network having a plural- weight values necessary to train each of the weights ll0. The 
ity of neurons each capable of providing outputs in accor- delta weight means 120 uses the error signal 150 along with 
dance with a transfer function. The plurality of weights are 5 the derivative F of the output of each neuron transfer 
shared with a validating network having a second plurality function 160 to train each of the weights 110, or to train new 
of neurons each capable of providing outputs in accordance hidden weights, not shown. The weights are updated based 
with the transfer function. With this method cross-validation on the delta weight algorithm using a weight update circuit 
testing or validation testing may be performed using the as is known in the art. 
validation network. N S O  With this method, trailliing the 10 The validating network 200 performs cross-validating and 
neural network and performing the at least one of cross- validation testing. The validating network 200 perfoms 
Validation testing or the validating testing may be performed cross-validating using a cross-validation data set 205 while 
simultaneously. the training network 100 is being trained using a training set 

105. Cross-validating controls learning and freezing the 
c:ircuitry and allows the advantages of speed, simplicity, and 15 learning rate of the training network 100 based on a prede- 
accuracy provided by analog storage to be exploited. termine threshold value to preventing over learning. 

After learning is complete, the validating network 200 is 
used for validation testing of a validation or test data set 215, 

refresh training of the pre~ously learned weights 

begins if the weights fall below a predetermined threshold of 
their trained values. As such, the weights are refreshed 
trained without having to use the original training data set 
105. As a result of the separate training and validating 

concurrently with refresh training. 
Thus, in implementation, one of the circuits is the learning 

network 100 which is computing the delta weights and 
3o updating them in real time. This network 100 learns the new 

and incomplete Patterns, and also ~ W K Z ~  and 
recovers the weights which can be degraded by charge 
leakage or the failure of some components. Another circuit 

35 simultaneously either to cross-validate or to validate data 
sets 205 or 215. Since two networks 100 and 200 are sharing 

DETAILED DESCRIPTION OF THE the same weight set in parallel, the differences between the 
PREFERRED EMBODIMENTS AND METHODS two networks 100 and 200 comprise multipliers (not 

OF THE PRESENT INVENTION shown), hidden neurons 16Oa and 26Ou, and output neurons 

on-chip learning using an analog approach to capacitor With the validating network 200 in parallel, the over 
training and refresh training. Such an approach eliminates learning state can be detected by validating the cross- 
the need for digital refresh circuitry and allows the advan- validation data set 205 without intempting the learning 
tages of speed, simplicity, and accuracy provided by analog process. In addition, the speed of learning is not slowed 
storage to be exploited. Further, preferred embodiments 45 down whether it is learning new weights in a new hidden 
incorporating the on-chip learning allow hardware imple- unit, or learning all the new and old weights in new and old 
mentation of training, cross-validation, and validation func- hidden units simultaneously. Because the speed of learning 
tions. does not have an effect in the weight space, the method and 

Turning to FIG. 1, in a preferred embodiment of the circuit of preferred embodiment of the present invention 
present invention a neural network is provided having two 50 provides learning new and old weight components simulta- 
si~nilar networks, one for training 100, and one for valida- neously. Therefore, potentially, the learning network 100 is 
tion 200. With this embodiment, two distinct networks, able to obtain the optimal trajectory since it can learn whole 
training 100 and validation 200, share the same weights 110 weight space repeatedly. 
between them. In this embodiment, the interconnection of FIG. 2 illustrates a functional flow of & e g ,  cross- 
Weights 110 and neurons 160 Of the training network 100 is 55 validating, and test set validating. With this method, weight 
re1Jlicaed in the Validation network 200 by Sh-g weights values are calculated by a pseudo-inverse technique 500 and 
110 and Using neurons 260. Thus, in a preferred downloaded 60(). A training data set is input the 
embodiment, the interconnection of weights 110 and neu- training network 1 m .  The training data set 1100 may also 
roiis 160 is mirrored in the validation network 200. be supplied to the validation network 2000 as the cross- 

In general, training involves summing the weights 110 of 60 validation data set 2100 of the validation network 2000. The 
a layer, applying the summed weights 110 to a transfer output of the cross-validation data set 2100 is compared to 
function 160, providing the transfer function output either to a target data set to provide cross-validation error signals. The 
a next layer as a weighted connection, or providing it for cross-validation error signals are compared to a threshold 
comparison with target data 140 to produce an error signal value in block 2200 to determine the learning state of the 
E sit 150 used to train the network 100. 65 training network 1OOO. If the cross-validation error is less 

During training iterations, the weight values 110 are than the threshold level the learning rate eta is frozen 1600 
continuously modulated using an error back propagation to prevent over learning. After the learning rate eta is frozen, 

Such an approach eliminates the need for digital refresh 

BRIEF SUMMARY OF THE DRAWTNGS 
FIG. 1 is a functional block diagram of a preferred 

embodiment in accordance with the present invention. 
FIG. 2 is a flow diagram of a preferred method in 

accordance with the present invention. 
FIG. 3 illustrates weights and neuron coupling in accor- 

dance with a preferred embodiment of the present invention. 

ckcuit in accordance with a preferred embodiment of the 
present invention. 

FIG. SA is empirical data of the transfer function gener- 
ated by embodiments of the present invention. 
FIG. fl3 shows an ideal derivative of the transfer func- 

tions of FIG. SA with respect to the input signals. 
FIG. 5c shows data of the derivative of the 

20 occurs through the training 100. Refresh 

FIG. 4 is a schematic diagram of a neuron and derivative 25 networks 100 and 200, test Set Validation testing may OCCW 

transfer functions of7IG. 5A of the derivative circuit of FIG. is, in Parallel, the validating network 2oo which is 
4. 

Preferred embodiments of the present invention provide 4o 16Oc and 260c. 
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b) a validation network comprising: 
(i) a plurality of transfer function circuits each being 

coupled to the plurality of charge storage circuits so 
as to replicate the coupling of the plurality of charge 
storage-to-the plurality of transfer function circuits 
of the training network. 

2. The neural network circuit of claim 1 wherein each of 
the plurality of transfer function circuits comprises a 
transconductance amplifier having a transfer function con- 
structed to provide differential currents I, and I, from an 
input current I, and to combine the differential currents to 
provide an output in accordance with the transfer function. 
3. The neural network circuit of claim 2 wherein each of 

the plurality of derivative circuits comprises a circuit con- 
structed to generate a biased I, and a biased I, and to 
combine the biased I, and biased I, to provide an output in 
accordance with the transfer function. 

4. The neural network circuit of claim 3 wherein each of 
the plurality of derivative circuits further comprises a sub- 
traction circuit constructed to provide the derivative of the 
transfer function from the biasing and combining circuit and 
the transconductance amplifier outputs. 

5. The neural network circuit of claim 4 further compris- 
ing a means to control the amplitude of I, and I,. 

6. The neural network circuit of claim 5 further compris- 
ing a means to control the amplitude of the biased I, and the 
biased I1. 

7. The neural network circuit of claim 1 wherein the 
training network is constructed to train using back propa- 

5 

10 

15 

20 

25 

gation. 30 
8. The neural network circuit of claim 7 further compris- 

ing a means for generating a plurality of delta weights from 
the plurality of derivative circuit outputs and a plurality of 
error signals E. 

9. The neural network circuit of claim 7 wherein the 
neural network circuit is constructed to train using cascade 
correlation. 

10. The neural network circuit of claim 1 wherein the 
plurality of charge storage circuits comprise capacitors. 

11. The neural network circuit of claim 1 wherein the 
transfer function is a sigmoidal transfer function. 

12. A neural network circuit comprising: 
a) a plurality of circuits capable of charge storage; 
b) a plurality of circuits each being coupled to at least one 

of the plurality of charge storage circuits and con- 
structed to generate an output in accordance with a 
neuron transfer function; 

c) a plurality of circuits each being coupled to one of the 
plurality of neuron transfer function circuits and con- 
structed to generate a derivative of the output; 

d) a weight update circuit for updating the charge storage 
circuits based upon output from the plurality of transfer 
function circuits and output from the plurality of 
derivative circuits; and 

wherein the neural network comprises separate training 
and validation networks, and wherein the training net- 
work comprises the plurality of charge storage, neuron 
transfer, and derivative circuits, and wherein the vali- 
dation network comprises the plurality of charge stor- 
age circuits and further comprises a plurality of neuron 
transfer function circuits each being coupled to the 
plurality of charge storage circuits so as to replicate the 
coupling of the plurality of charge storage circuits-to- 
the plurality of neuron transfer function circuits. 

13. The neural network circuit of claim 12 wherein each 
of the plurality of transfer function circuits comprises a 

35 

40 

10 
transconductance amplifier having a transfer function con- 
structed to provide diEerential currents I, and I, from an 
input current I, and to combine the differential currents to 
provide an output in accordance with the transfer function. 

14. The neural network circuit of claim 13 wherein each 
of the plurality of derivative circuits comprises a circuit 
constructed to generate a biased I, and a biased I, and to 
combine the biased I, and biased I, to provide an output in 
accordance with the transfer function. 

15. The neural network circuit of claim 14 wherein each 
of the plurality of derivative circuits further comprises a 
subtraction circuit constructed to provide the derivative of 
the transfer function from the bias and combine circuit and 
the transconductance amplifier outputs. 

16. The neural network circuit of claim 12 wherein the 
plurality of charge storage circuits comprise capacitors. 

17. The neural network circuit of claim 12 wherein the 
transfer function is a sigmoidal transfer function. 

18. The neural network circuit of claim 12 wherein the 
neural network circuit is constructed to train using back 
propagation. 

19. The neural network circuit of claim 18 wherein the 
neural network circuit is constructed to train using cascade 
correlation. 

20. A method of signal processing in a neural network 
comprising: 

a) creating a plurality of synaptic weights by storing 
charge on a plurality of capacitive circuits; 

b) generating a plurality of neuron outputs in accordance 
with a transfer function from the plurality of weights 
using a plurality of transfer function analog circuits; 

c) continuously generating in real time a derivative of 
each of the plurality of neuron outputs using a plurality 
of derivative circuits each coupled to one of the plu- 
rality of transfer function circuits; and 

d) training the neural network using a plurality of delta 
weights generated using the plurality of transfer func- 
tion derivatives. 

21. The method of claim 20 wherein training further 
comprises controlling a learning rate of the plurality of 
weights using a validation network comprising a plurality of 
transfer functions circuits coupled to the plurality of 
weights. 

22. The method of claim 21 wherein controlling the 
learning rate further comprises: 

a) supplying a cross-validation data set to the validation 

b) generating error signals at an output of the validation 

c) comparing the error signals to a threshold value; and 
d) setting the learning rate using a result of the compari- 

23. The method of claim 20 further comprising validating 
55 test set data using a validation network comprising a plu- 

rality of transfer functions circuits coupled to the plurality of 
weights. 

24. The method of claim 23 wherein validating the test set 
data and training the neural network are performed simul- 

25. The method of claim 20 further comprising generating 
a second plurality of neuron outputs in accordance with the 
transfer function by sharing the plurality of weights and 
using a second plurality of transfer function circuits. 

26. The method of claim 20 further comprising using a 
pseudo inverse technique to calculate an initial value for the 
plurality of weights. 

45 

network; 

50 network 

son. 

60 taneously. 

65 
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27. The method of claim 20 wherein training further 
c:omprises adding a plurality of new hidden neurons to 
previously formed neurons based on the learning rate to 
generate a plurality of neuron outputs in accordance with the 
bransfer function from a plurality of new hidden weights 5 
using a plurality of new transfer function circuits. 
28. The method of claim 27 further comprising genwating 

a derivative of each of the plurality of new hidden neuron 
outputs. transfer function; 

of neuron outputs in accordance with a transfer function and 
generating a derivative of each of the plurality of neuron 
outputs further comprises using field effect transistors. 
30. The method of claim 20 wherein generating a plurality 

of neuron outputs comprises generating differential output 15 
currents I, and I, for each of the plurality of neuron outputs, 
and wherein generating a derivative of each of the plurality 
of neuron outputs further comprises providing biases to each 
of I, and I,, and wherein generating a derivative of each of 

biased I, and biased I, to provide an output in accordance 
with the transfer function. 

31. A method for signal processing in a neural network 
circuit Comprising: 

a) training a plurality of synaptic weights by storing 
charge on a plurality of capacitive circuits using a 
training network having a plurality of neurons each 
capable of providing outputs in accordance with a 

b) sharing the plurality of weights with a validating 
network having a second plurality of neurons each 
capable of providing outputs in accordance with the 
transfer function; and 

c) performing at least one of cross-validation testing or 
validation testing using the validation network. 

32. The method of claim 31 wherein training and per- 
forming the at least one of cross-validation testing or the 
validating testing are performed simultaneously. 

29. The method of claim 20 wherein generating a plurality 10 

the plurality of neuron comprises using I, and I, and the * * * * *  


